Polydopamine-Gelatin as Universal Cell-Interactive Coating for Methacrylate-Based Medical Device Packaging Materials: When Surface Chemistry Overrules Substrate Bulk Properties.

نویسندگان

  • Elke Van De Walle
  • Ine Van Nieuwenhove
  • Els Vanderleyden
  • Heidi Declercq
  • Karolien Gellynck
  • David Schaubroeck
  • Heidi Ottevaere
  • Hugo Thienpont
  • Winnok H De Vos
  • Maria Cornelissen
  • Sandra Van Vlierberghe
  • Peter Dubruel
چکیده

Despite its widespread application in the fields of ophthalmology, orthopedics, and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials that ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethylene glycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials possessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Deposition of Uniform Polydopamine Coatings on Nanoparticle Surfaces with Controllable Thickness.

Polydopamine is a bioinspired, versatile material that can adhere to bulk and nanoscale surfaces made of disparate materials to improve their physical and chemical properties in many applications. The typical methods to coat polydopamine on the nanoparticle substrates usually take several hours to a day. This work successfully applies a dispersion method to form a controllable, uniform coating ...

متن کامل

Synthesis of graphene oxide / polydopamine composite for coating on clay substrate for water treatment

Water purification is a vital and essential thing for human life. The presence of pollutants in water is a major threat to the environment and human health. Various materials have been proposed and used for water treatment in recent years. Recent research has shown the potential of two-dimensional materials such as graphene oxide and its composites for water purification. The goal of this proje...

متن کامل

Rapidly-Deposited Polydopamine Coating via High Temperature and Vigorous Stirring: Formation, Characterization and Biofunctional Evaluation

Polydopamine (PDA) coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modificat...

متن کامل

Characteristics of PANi/rGO Nanocomposite as Protective Coating and Catalyst in Dye-sensitized Solar Cell Counter Electrode Deposited on AISI 1086 Steel Substrate

One of the possibilities to mass-produce dye-sensitized solar cell (DSSC) device is if it could be embedded to the area atop metal roof. However, the use of metal substrate is constrained by the corrosion caused by the electrolyte solution used in the DSSC device such as iodide/tri-iodide (I-/I3-). In this study, we propose the utilization of polyaniline/reduced graphene o...

متن کامل

Entrapment of Autologous von Willebrand Factor on Polystyrene/Poly(methyl methacrylate) Demixed Surfaces

Human platelets play a vital role in haemostasis, pathological bleeding and thrombosis. The haemostatic mechanism is concerned with the control of bleeding from injured blood vessels, whereby platelets interact with the damaged inner vessel wall to form a clot (thrombus) at the site of injury. This adhesion of platelets and their subsequent aggregation is dependent on the presence of the blood ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2016